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The subharmonic resonance phenomenon is studied using hot-wire measurements and 
flow visualization in an initially laminar shear layer forced with two-frequencies 
for various choices of the fundamental frequency f and its subharmonic f/2 with 
controlled initial phase difference between them. We explore the effects of the 
controlling parameters, namely : (i) forcing frequencies and their initial amplitudes, (ii) 
initial phase difference &, and (iii) detuning (i.e. when the second forcing frequency 
is slightly different from f / 2 ) .  While several of our experimental observations support 
predictions based on weakly nonlinear theory, others do not. We explain our data in 
terms of vortex dynamics concepts. 

1. Introduction 
The initiation, growth, interaction, breakdown, and regeneration of coherent 

structures are manifestations of a hierarchy of instabilities in turbulent shear flows. The 
coherent structure dynamics in transitional free shear flows are strongly dependent on 
the initial shear layer instability which, in turn, depends on initial flow states and 
perturbation characteristics. 

Subharmonic resonance is a result of the nonlinear interaction between a wave of 
frequency f and its subharmonic f/2, producing an f/2 component which, depending 
on its phase, is capable of reinforcing the subharmonic (hence the term ‘resonance’). 
The growth of the subharmonic is a key feature in mixing-layer dynamics because it 
leads to vortex pairing, which has important roles in technological applications. The 
presence of a subharmonic component as well as vortex pairing in a shear layer has 
been known for some time (e.g. Anderson 1955; Sat0 1959; Bradshaw 1966; Browand 
1966; Ho & Huang 1982); here we report new results documenting the phenomenon 
and explain them, primarily in terms of vortex dynamics. 

In addition to obtaining a much needed basic understanding, a study of subharmonic 
resonance is important to enable turbulence management - enhancement or sup- 
pression - in mixing layers by manipulating the initial conditions. Turbulence 
management can contribute to the enhancement of large-scale engulfment, mixing, 
heat transfer and chemical reaction (including combustion), and reduction of drag and 
aerodynamic noise (Laufer 1974; Bridges & Hussain 1987). This management may be 
achieved in a jet or a single-stream mixing layer by using control parameters such as 
Sree(= fBe/Ue), ax=  u;/U,),  a;,2( = U;, ,~/U,) ,  and rj&, (where f is the fundamental 
excitation frequency, 8, is the exit momentum thickness, U, is the free-stream velocity, 
ui, and u:f,2 are the initial r.m.s. longitudinal velocity perturbation amplitudes of the 
fandf/2 components, and #in is the initial phase difference betweenfandf/2). In this 
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paper, #I always refers to the f - f / 2  phase difference (as defined in equation (2.1)) with 
spatial variations indicated by the subscript. 

Initial instability. An initially laminar shear layer’s sensitivity to disturbances has 
been accurately predicted using linear instability analysis (Michalke 1965) and verified 
experimentally (Freymuth 1966). Employing a composite expansion technique that 
accounts for both shear-layer spreading and critical-layer nonlinearities, Goldstein & 
Leib (1988) and Hultgren (1992) predicted the growth rate, saturation amplitude, and 
rollup of a fundamental wave and found good agreement with experimental results of 
Freymuth (1966). The amplification rate is highest at St,  x 0.017; thus, one would 
expect an unforced shear layer to roll up at this frequency. However, experimental 
studies by Zaman & Hussain (1980) revealed that an unexcited shear layer rolls up into 
discrete vortical structures at Stec x 0.012 and not at Sloe x 0.017. (We refer to 
St,  z 0.012 as the ‘natural instability frequency’.) Data also show that the maximum 
amplification (i.e. maximum saturation amplitude) occurs at St,  x 0.012 while 
excitation at St, x 0.017 produces the maximum amplification rate, but saturation to 
a lower level. Saturation to a lower level and suppression of pairing are the causes of 
turbulence suppression observed by Zaman & Hussain (1981). Hussain (1986) argued 
that this anomaly in the vortex rollup frequency is a consequence of feedback being 
strongest at St, x 0.012 (see $3.2.3). 

We first examine the current theoretical, numerical, and experimental knowledge 
about subharmonic resonance and pairing, focusing on their limitations and the need 
for a comprehensive experimental study such as ours. 

1.1. Subharmonic resonance and vortex pairing 
Theory. The instability mechanism by which a subharmonic perturbation is amplified 
in a shear layer was first analysed by Kelly (1967) using a weakly nonlinear temporal 
theory for a parallel flow. The theory predicts that the growth of such perturbations 
is most pronounced when the fundamental amplitude is neutral and the perturbation 
frequency is half the fundamental. Pierrehumbert & Widnall (1982) performed a 
similar analysis but used the Stuart solution (Stuart 1967) as the steady basic state and 
treated its linear stability as a two-dimensional eigenvalue problem. Their results are 
in close agreement with those of Kelly. 

Monkewitz (1988) extended Kelly’s (1967) weakly nonlinear analysis to spatially 
growing waves in a parallel mixing layer with a hyperbolic-tangent profile. He 
addressed several aspects of subharmonic resonance, including : (i) the dependence of 
the subharmonic growth on #Ixf (phase difference at the fundamental saturation 
location xf ) ,  (ii) the existence of a critical fundamental amplitude for resonant 
subharmonic growth, and (iii) the effects of detuning. More recently, Cheng & Chang 
(1992) derived the onset criteria for subharmonic instabilities accounting for O(3) 
terms in the amplitude equation. (Note that Kelly 1967 and Monkewitz 1988 used 
terms up to O(2).) In contrast to the O(2) analysis, Cheng & Chang showed that a 
finite-amplitude wave is always unstable to disturbances with half its frequency if the 
subharmonic is linearly unstable. However, this higher-order theoretical analysis has 
contributed little to understanding of the flow. 

Limitations of rhe theory. Pierrehumbert & Widnall (1981) and Mankbadi (1985) 
have explained rollup, pairing, and shredding in terms of energetics, but not the 
associated vortex dynamics. Laboratory (and most technological) flows do not satisfy 
the assumptions invoked in the theoretical analysis of Monkewitz (1988), namely, weak 
nonlinearity, slight flow divergence, and a neutral fundamental. Furthermore, the 
assumed constant profile is not consistent with his slightly non-parallel mean flow 
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approximation (Monkewitz 1988) and disallows the vortices from moving transversely 
(during actual pairing). As a result, this model cannot describe vortex pairing and is 
valid at most for a small region near xr. 

Numerical simulations. Riley & Metcalfe (1980) and Corcos & Sherman (1984) 
numerically studied subharmonic resonance for temporally growing mixing layers and 
found that the kinematics of the associated interactions depend critically on the initial 
phase difference betweenfandf/2. However, shear layers in virtually all technological 
flows are spatially evolving. There are clear differences in the pairing dynamics in these 
two flows, e.g. unequal induction by neighbouring structures on a pairing/paired 
vortex in a spatially developing flow (discussed in $3.1.2). 

Experiments. Although the initial subharmonic amplitude measured by Zaman & 
Hussain (1980) and Drubka (1981) is in qualitative agreement with the theoretical 
prediction of Monkewitz (1988), their data lack details of subharmonic resonance. 
Additionally, the theoretically obtained critical fundamental amplitude (Monkewitz 
1988) disagrees with Drubka’s data. 

Arbey & Ffowcs Williams’ (1984) study of a circular jet (using two-frequency 
excitation atfandf/2) detected a dependence of the subharmonic growth on the phase 
difference $ in the excitation signal. Because they did not measure $ from velocity 
signals at the exit plane or at xr, a direct comparison of their data with either 
theoretical results or the present experiments is not possible. Hajj, Miksad & Powers 
(1993) concluded that the maximum subharmonic growth occurs at a single phase, in 
contrast to Monkewitz’s (1988) prediction of subharmonic enhancement over a wide 
range of #zf’ This is not surprising because Hajj et al. investigated subharmonic 
resonance at four phases only. In a recent experiment in an axisymmetric jet, 
Paschereit, Wygnanski & Fiedler (1995) also observed dependence of the subharmonic 
growth on the phase angle. 

1.2. Motivation and goals 
Since subharmonic resonance typically leads to vortex pairing, vortex dynamics and 
classical instability analysis of interacting waves should complement each other to 
provide a better understanding of the phenomenon. The initial disturbance waves 
(fundamental and subharmonic) govern the strengths of vortices at rollup, their 
streamwise spacing, and their transverse displacement, which subsequently control 
pairing dynamics. However, previous subharmonic resonance studies have not focused 
on the dynamics of interacting vortices. 

One of our long-term goals is to model the pairing phenomenon and use the model 
for prediction and control. Based on a conceptual model of the flow physics, 
experiments can reveal the effects of control parameters, which can then be 
incorporated into low-dimensional mathematical models. Since subharmonic reson- 
ance and pairing have been found to be crucial elements of periodic and chaotic 
vortex dynamics in shear layers and jets (Narayanan & Hussain 1995; Broze & Hussain 
1994), well-controlled subharmonic resonance experiments can provide a key input for 
such models. 

The present study (employing controlled, two-frequency, phase-locked, and detuned 
excitation) examines the development of sideband frequencies and transition to 
turbulence of natural (unforced) or excited (with a single frequency) shear layers in 
addition to recommending methods for turbulence and mixing control. This study has 
the following objectives : (i) to understand the flow physics associated with subharmonic 
resonance and interpret the theoretical predictions in terms of vortex dynamics and (ii) 
to achieve turbulence control by exploiting the dependence of subharmonic resonance 
on control parameters. The experimental apparatus and procedure are described in $2. 
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The results are discussed in $3, which include the effects of $in,  f, and detuning. 
Concluding remarks are presented in $4. 

2. Experimental apparatus and procedure 
2.1. Air jet facility 

Hot-wire measurements were made in the shear layer of a 27 cm diameter jet (figure 
1 a) .  A centrifugal blower with a Poly Spede motor controller permitted speed control 
within f0.1% of the full range of 2500 r.p.m. Room air enters the blower through a 
1 m x 1 m filter box fitted with multistage fibreglass filters. The inlet section of the 
blower has a honeycomb (0.63 cm cell and 5.4 cm deep) to eliminate large intake swirls. 
The flow from the blower passes through a silencer (consisting of Helmholtz and 
quarter-wave resonators) and a three-stage square diffuser (each 1.5 m long). There is 
a 24-mesh screen between each stage. The diffuser section is followed by a 3.6 m long 
settling chamber fitted with 12 screens and a honeycomb. The 8: 1 nozzle has a cubic 
profile with a 13 cm straight section at the exit. 

The shear layer was excited by a speaker through a narrow uniform slit (0.5 mm) 
along the nozzle exit perimeter. A large speaker in the speaker box produced pressure 
pulses which were transmitted to the excitation box through four 28.5 mm diameter 
tubes of equal lengths, assuring identical phases of pressure pulses transmitted from the 
speaker box to the shear layer excitation slit. The speaker box is enclosed in a steel box 
with foam padding so that pressure can only be transmitted through the tubes. 

An excitation signal, consisting of two harmonically related frequencies, was 
produced by a phase-locked generator to drive the speaker. The velocity perturbation 
produced at the shear-layer origin was of the following form with negligible higher- 
harmonic contents : 

u = a,cos (2nft) + a,,, cos (nft + (2.1) 

Velocity data were obtained by a linearized constant-temperature hot-wire 
anemometer (DISA). A special long-prong probe (TSI-1210C) was placed at an angle 
such that the probe stem remained outside the flow, producing no probe-induced 
shear-layer tones (Hussain & Zaman 1978). Phase angles were measured by a digital 
signal analyser (Ono-Sokki CF-920). A laboratory minicomputer (HP 2100) was used 
for traverse control, data acquisition, and on- and off-line data processing. 

2.2. Initial boundary-layer characteristics 
The exit-plane boundary-layer characteristics (longitudinal mean and r.m.s. velocity 
distributions) were measured at several exit velocities to find the velocity range over 
which the boundary layer remained laminar. As examples, exit boundary-layer profiles 
at three jet velocities (V ,  = 12.2, 15.2 and 18.3 m s-') are shown in figure l(b). 
Although the measured mean velocity data agree well with the Blasius profile (shown 
by the solid line) and have shape factors close to 2.59, profiles of turbulence intensity 
indicate that the boundary layer is transitional for U, > 17 m s-l. This reinforces our 
claim that the mean velocity profile alone cannot indicate whether or not a boundary 
layer is laminar (Hussain 1983). In all cases, the longitudinal fluctuating velocity 
profiles show peaks at y - 6*, as explained by Hussain & Clark (1977), and decrease 
monotonically to the free-stream value of about u:/Ue = 0.1 %. Note that the free- 
stream turbulence of 0.1 % is almost entirely due to room acoustic modes in the 
6-10 Hz range, quite distinct from the excited fundamental (20CL500 Hz) or the 
subharmonic. 



Experiments on subharmonic resonance in a shear layer 347 

Motor 
bl 

ass 
lower 
iembly Acoustic 

suppressor 
I 

Nozzle with 
Settling chamber excitation chamber Diffuser 

--;---- 
I 

a 
Intake 

I I I I 0.015 

1.00 - 

- 0.010 
0.75 - 

U 

" 0.50 - 
- 

7 0.005 

0.25 

n ., 
0 1 2 3 4 5 

y/6* 

FIGURE 1. (a) Schematic of the air jet facility with a lip excitation system. (b) Boundary-layer 
characteristics in the air jet; profiles of mean (solid symbols) and r.m.s. intensity (open symbols) of 
u at three jet velocities: 0, 12.2 m s-l; A, 15.2 m s-l; 0, 18.3 m s-'. The solid line through the mean 
velocity data represents the Blasius profile. The high turbulence intensity for U, z 18.3 m s-' indicates 
a transitional boundary layer. 

To avoid transitional exit boundary layers, the present studies were performed at exit 
velocities below 15.2 m s-l. Since the shear-layer excitation system has discrete 
resonance frequencies, both velocity and frequency were adjusted to obtain the desired 
St,, values. Variation of the exit momentum thickness O,/D with Reynolds number Re, 
(= U,D/v )  was measured. Within the velocity range 10.7 < U, < 18.3 m s-l, O,/D has 
the expected power-law variation with Re,. A least-squares fit of the data has the form 
B,/D = 2.4 x 0.755Re;0.5. Using this expression and the available resonance 
frequencies of the excitation system, U, was selected to achieve a desired St,  value. 
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FIGURE 2. Schematics of: (a) water jet facility with flow visualization equipment; (b)  dye injection 
and excitation system. 

Note that within the operating U, range, 8, is orders of magnitude smaller than the 
diameter D (e.g. D / 8 ,  z 670 at U, = 14.5 m SKI), indicating that the effect of nozzle exit 
curvature on the initial evolution of the shear layer is negligible. 

2.3. Water je t  

Flow visualization was performed in a submerged water jet facility (figure 2a). A 
constant-head supply tank upstream of the contraction nozzle maintained a prescribed 
flow rate. Two 28 mesh screens were placed in the settling chamber to minimize 
upstream disturbances. A 10 cm circular nozzle with a 9: 1 contraction ratio was used 
for this study. 

The shear layer was excited at the nozzle exit plane through a 0.5 mm slit using an 
electromagnetic shaker, actuating a piston in a cylinder containing water. The cylinder 
outlet was connected to the outer perimeter of the shear layer excitation chamber 
through four tubes of equal lengths. Thus, periodic perturbations were transmitted 
through water from the cylinder to the excitation chamber and finally to the nozzle exit 
boundary layer (figure 26). The Reynolds numbers Re, based on the jet diameter D for 
the air and water jets are different: for the air jet, Re, - 230000, while for the water 
jet, Re, - 50000. However, for our study, Re, is not an important parameter since the 
near-exit flow is quasi-two-dimensional with a large D/8,  (- lo’). 

To visualize the flow, a low-concentration fluorescent dye (Uranamine) was 
supplied through a second narrow slit along the nozzle perimeter about 1 cm upstream 
of the exit plane. The height of the dye reservoir was adjusted such that the dye seeped 
into the boundary layer without introducing any perceptible disturbances. A cylindrical 
lens flared a 12 W Ar-ion laser beam into a thin sheet to illuminate the plane of 
interest in the flow field. 
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Video recorded images, digitized by a Colorado Video Model 274 frame grabber, 
were enhanced using an International Imaging System (11s 600) image processor; and 
the intensity contours were computed using a Masscomp 5500 computer. The flow 
visualization data are presented in the form of isointensity contours of light emitted by 
the fluorescent dye. 

3. Results and discussion 
We first address the role of gin in modifying vortex configurations leading to 

subharmonic enhancement or attenuation. Using low-level, two-frequency, phase- 
locked excitation, we examine the StOe range over which vortex pairing can be affected. 
Then, results of controlled detuned excitation are compared with theoretical 
predictions. Furthermore, these results are used to analyse the evolution of natural 
(unforced) shear layers. 

3.1. The role of phase angle in subharmonic growth 
Because of dispersion, the exit phase difference evolves to q5zf at xf  where resonance 
begins. Theory (Monkewitz 1988) predicts that the subharmonic is attenuated at a 
critical value of q5zf but enhanced over a wide range of q5=,. This will be verified in this 
subsection and in 53.3. The value of required for maximum enhancement or 
suppression is not fixed and depends on St,  as well as a;, as the phase speed and xf  vary 
with Stoe, and xf  varies with a;. We have determined the values of #in that produce 
enhancement and attenuation of the subharmonic for various StOe and excitation levels. 
In the following, we show results for excitation only at the natural instability frequency 
and its subharmonic, i.e. St, = 0.012 and 0.006 with a; = a;/z = 0.1 YO. 

was examined at a number 
of streamwise stations. Note that the range 0 < q5tn < x covers one period of the 
fundamental (equation (2.1)). At each x station, measurements were made at the 
transverse location of peak u ; / ~  (for each are 
shown in figure 3(a-c) for x / 8 ,  = 30 (upstream of xf) ,  80 (downstream of x f )  and 140 
(downstream of the subharmonic saturation location x,). The initial phases which 
correspond to maximum enhancement and attenuation of the subharmonic are 
denoted by and respectively. 

As expected, at x / 8 ,  = 30, u; and uiIz are almost constant for all #in (figure 3 a)  since 
u; and u;,~ grow independently upstream of x , .  However, downstream of x f ,  u& shows 
significant variations with At x/8, = 80, we find - 150" and s 72" (figure 
3 b) .  The subharmonic amplitude uiIZ shows a cusp-like behaviour at At the third 
location (i.e. x / 8 ,  x 140; figure 3 c), u;Iz decreases sharply at but the corresponding 
value of u ; / ~  is higher than it is at x/O, = 80. This higher value is due to intermittent 
pairings because the configuration of rolled-up vortices for (discussed later in this 
section) is unstable. At x / 8 ,  = 140, u;Iz is smaller at the enhancement phase 
(gin x 140") than at x 30" and 90", because u;/~.  has saturated in the former case at 
an earlier location (x ,  x 1248,). However, pairing IS delayed for (x 30°, 90") near 

Thus, at x / 8 ,  x 140 the u ; / ~  values are higher for these phases than for those near 
+,,, (qbin x 140°), since decay following saturation has not yet begun. 

Experiments at higher excitation levels (e.g. a; = a;,2 = 1 YO) produce results (not 
shown) similar to figure 3, except that #en - 120" and x 27". Since higher a; moves 
xf  upstream but q5zf remains constant for enhanced ( x x/2) or suppressed (x 0) pairing 
(see $3.1.1), the flow must evolve from a different in order to reach the necessary 
phase at x, .  The fundamental saturates at xf  x 608, for 0.1 % excitation, but at 

The dependence of the subharmonic amplitude u ; / ~  on 

The variations of u; and u ; / ~  with 
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FIGURE 3 .  Dependence of #;and uilz on $ t m :  (a) x/O, = 30; (b) x/O, = 80; (c) x/O, = 140. St = 0.012; 
a; = ai12 = 0.1 YO. 0,  u' ;  0, uilZ. u;,2 is strongly attenuated at a critical value of ${,, z 72cwhile u;,* 
is enhanced over a wide range of ${,,. Note that u; shows very little variation with 4,". 

x, z 408, for 1 O h .  Thus, for a fixed St,, variation in with a; is due to the 
changes in x,. 

The dependence of the modified subharmonic growth rate near x, on phase 
difference is a crucial element of the periodic and chaotic dynamics found in jets 
(Broze & Hussain 1994) and shear layers (Narayanan & Hussain 1995). In these 
experiments, f was forced and f / 2  perturbations came from pairing feedback. They 
hypothesized that if a; is large enough, a modified f / 2  growth rate will occur which 
leads to phase-locked f / 2  feedback (hence periodic pairing). Lower a; will not permit 

or 
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FIGURE 4. Possible vortex configurations which result in the enhancement and attenuation of the 
subharmonic component. (a) Equally spaced vortices, but with alternating high and low strengths; 
(b) equally strong vortices with alternating large and small spacing; (c) equally strong and equally 
spaced, but staggered transversely; ( d )  equally strong and equally spaced vortices. @I indicates vortex 
centre. 

phase locking, and #tn will wander through all phases including enhancement and 
attenuation phases. 

Clearly, q5zf controls pairing enhancement or suppression. As we explain below 
(0 3.1. I), it does so by controlling the configuration of vortices at rollup and, hence, 
their subsequent interactions. To make this connection clear, we examine the vortex 
configurations (and their induced motions) at different #zf. For this purpose, we 
consider the Psignal on the high-speed side of the shear layer because single hot-wire 
measurements there provide clean signals without significant measurement inac- 
curacies, including effects of flow reversal on the zero-speed side. 

3.1.1. Vortex configurations and their induced velocity fields 
After the shear-layer vortices roll up, a subharmonic component appears in the fi- 

signal for any one (or a combination) of the following vortex configurations shown in 
figure 4(a-c): (a)  equally spaced vortices advecting along a straight line, but with 
alternate high and low strengths; (b) equal-strength vortices with alternating larger and 
smaller spacings ; or (c )  equally spaced vortices of equal strength, but alternately 
staggered in the transverse direction. The subharmonic component in the velocity 
signal will be absent only when equally strong and equally spaced vortices advect along 
a straight line (figure 4 d ) .  
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FIGURE 5. Schematics showing streamwise velocity fluctuations on the high-speed side of a shear layer 
and the corresponding vortex configurations for: (a, 6) $en; (c, d )  @ indicates vortex centre. 

Consider vortex configurations at xf which cause subsequent subharmonic 
enhancement or attenuation. First, note that the exit velocity perturbation controls the 
vortex configuration, and vortex centres are formed at the location where the 
transverse gradient of u (i.e. w,) is maximum. Secondly, note that the peak in u lies 
transversely away from the vortex centre towards the high-speed side where 
measurements are made. For $xf = ~ / 2 ,  the peaks of the subharmonic perturbation lie 
between adjacent peaks of the fundamental perturbation (figure 5 a), causing peaks in 
the resultant perturbation to move closer (figure 5b); and hence vortices roll up 
alternately close to and farther from their neighbours. The two nearby vortices thus 
produced undergo pairing through mutual induction. On the other hand, for $xf = 0, 
the resultant perturbation has alternately high and low peaks (figure 5c, d), presumably 
producing vortices which are equally spaced but alternating in strength. The mutual 
inductions on a particular vortex from its neighbouring upstream and downstream 
vortices are equal but in opposite directions. As a result, the vortices advect in a 
straight line, and hence pairing is suppressed. 

In the following, we show three kinds of vortex interactions, namely (i) enhanced 
pairing, (ii) non-pairing advection of vortices and (iii) shredding, observed via flow 
visualization under excitation at the natural instability frequency (i.e. StOe = 0.012) and 
its subharmonic. Forcing levels a; and were not measured in the flow visualization 
studies. The relative levels of these two were controlled in the driving signal of the 
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FIGURE 6. Isointensity contours of flow visualization pictures for low AR,,. (a) $J = 
pairing (completed at frame 6); (b) $ = 
configuration (see frames 4 to 7). 

enhanced 
suppression of pairing showing straight-line vortex 

excitation device. Flow visualization data are presented in the form of isointensity 
contours of the fluorescent dye (figures 6 and 7). 

3.1.2. Enhanced pairing and advection of unpaired vortices 
When excited at #en with a low initial amplitude ratio AR,, (= u;,Ja;), two vortices 

undergo pairing immediately after rollup (figure 6a) .  On the other hand, for at the 
same excitation levels, equally spaced vortices form and advect downstream along a 
virtually straight line (figure 66) .  However, this straight-line configuration is unstable 
to small perturbations, and ambient disturbances cause the vortices (by altering the 
phase difference at the lip and circulation during rollup) to undergo pairing farther 
downstream (although once a pairing is initiated, pairing feedback may sustain 
subsequent pairings for some time.) By ambient disturbances we mean perturbations 
(e.g. noise from the blower, air-conditioning system, standing acoustic modes in the 
laboratory, or flow in the breakdown region and beyond) produced outside the domain 
of interest (i.e. from the exit plane to the end of the jet potential core). 

Note that the vortex configurations in a spatially developing shear layer (figure 6a)  
are quite different from those in a temporally evolving shear layer. In the present case, 
the induction on a particular vortex (say the second vortex from left in the sixth panel 
of figure 6a)  by the upstream single vortex and the downstream paired vortex are 
unequal. 
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(a)  (b) 

FIGURE 7. Isointensity contours of flow visualization pictures for high AR,,. (a )  @ = @en; and (6)  
r$ = I$,,,. High AR,, produces smaller and larger vortices alternately. In (a), vortex interaction shows 
complete pairing (frame 6). In (b), shredding of the smaller vortex by its neighbouring vortices is 
evident in frames 5 to 9. 

3.1.3. Shredding 
Shredding refers to the situation when a weak vortex is at the saddle between two 

stronger vortices. The stronger vortices shear the weak one and pull it apart, each of 
the former capturing a part of the latter. We found significant shredding under strong 
subharmonic excitation (i.e. high A&,) at which produces equally spaced vortices 
with a weaker vortex at the location where the f and f/2 waves are out of phase 
(denoted by vertical arrows in figure 5 d ) .  Owing to the straining action of the two 
stronger vortices, vorticity from the weak vortex is transported to the neighbouring 
vortices (clearly visible in the flow visualization shown in figure 76). Because the 
visualization experiments were for qualitative information, the excitation levels 
required for shredding before three-dimensional deformation were not recorded. A 
small deviation from 

AR,, is important in determining whether complete shredding or non-paired 
advection occurs. For excitation at with decreasing AR,,, the difference in strength 
between neighbouring vortices decreases. As a result, shredding progresses more slowly 
and thus takes place over a longer distance. However, in reality, three-dimensional 

inhibits shredding and initiates pairing (figure 7a). 
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deformation of spanwise vortices (rolls), generation of longitudinal vortices (ribs), 
rib-roll interaction, and breakdown of rolls take place long before the completion of 
shredding. 

In summary, we have identified initial phase angles that maximally enhance or 
suppress the subharmonic growth and explained the associated flow physics (e.g. 
pairing, non-pairing advection of vortices, and shredding) in terms of vortex dynamics. 

3.2. Effects Of Stet 
We observed that under low-amplitude (a; < 0.1 YO), single-frequency excitation, 
periodic pairing occurs within a narrow band of StOe (around 0.012). Is it possible to 
achieve periodic pairing over a wider range of Stee values using low-amplitude, two- 
frequency excitation and a controlled &? Because the growth rate depends on Stgc, the 
local amplitude ratio AR,  (= u;,,/u; at xf) will change with Stee even for a fixed AR,,. 
As a result, relative vortex strengths and orientations will vary with StOe. Thus, one 
would expect the details of vortex pairing to depend on StOe. To study this dependence, 
we have examined the development of u; and u;/~ along the lip line for 
0.006 < St,, < 0.024 (figure 8a-4. Both a; and a;/2 were 0.1 YO, and the excitation 
phase was 

3.2.1. Fundamental 
By increasing StOe up to 0.017, the fundamental growth rate increases, the saturation 

amplitude decreases, and x f  moves upstream (figure 8 a, b). Further increases in StOe 
cause a rapid decrease in the growth rate and the saturation amplitude. Excitation at 
Stee = 0.024 even leads to an initial decay of the fundamental up to x/O, x 6, and the 
u; growth farther downstream appears to be due to generation of the first harmonic of 
the subharmonic. (Note that growth trends of the measured when excited at 
St,  = 0.012 (not shown) match quite well with those of u; for St,  = 0.024 for 
./be x 25-60.) Freymuth’s (1966) experiments using single-frequency excitation at 
a; = 0.3 % do not provide data near the exit plane for x/Oe < 8 for comparison. Figure 
8(e) compares the growth rate data with those of Freymuth (1966). Results of the 
inviscid linear spatial stability analysis for two-dimensional parallel mixing layers by 
Monkewitz & Huerre (1982) for tanh velocity profiles ( R  = 1 and R < 1) and by Balsa 
(1987) for a piecewise linear velocity profile ( R  = 0.5) are also shown. (Here 
R = (U, - U2)/20, and U = (U, + U2)/2 defined for two streams.) In figure 8(e), St, 
equals fO/O, i.e. twice our parameter St, since O =  Ue/2. Unlike the growth rate 
characteristics for tanh-profiles, piecewise linear profiles show a rapid decrease in the 
growth rate for St, 2 0.036. Our data agree better with the spatial theory ( R  = 1) for 
St, < 0.036 and show a rapid decrease in the growth rate for St, 3 0.036 following a 
trend similar to Balsa’s results. In contrast, Freymuth’s data are close to the results of 
Monkewitz & Huerre (1982) for R < 1, which is equivalent to the temporal formulation 
using a space-time transformation (Ho & Huerre 1984). The initial decay of u; at 
St, = 0.048 in our experiment and the absence of any disturbances of the streaklines 
over a long distance in Freymuth’s flow visualization at St, = 0.05 (his figure 28) 
indicate that the instability range does not extend up to St, = 0.08, as obtained by 
Monkewitz & Huerre (1982), but to a much lower value, St,  - 0.046. 

An interesting aspect of the present experiment is that the growth rate data are in 
close agreement (up to Stee x 0.017) with the spatial analysis of Monkewitz & Huerre 
(1982), while Freymuth’s data show lower growth rates. Note that the present 
experiments were performed using lip excitation, whereas Freymuth used bulk 
excitation of the jet. We performed experiments using bulk excitation and obtained 
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4 = #,,,. The subharmonic u;,* undergoes a modified growth near the fundamental saturation location 
x,. indicating resonant growth of the subharmonic. At a lower SI, (sz 0.008), U J X )  shows a negative 
growth rate before it attains a strongly positive growth rate near x,. (e) Spatial growth rates (-a, OJR) 
of the fundamental in the linear region. 0, lip excitation and 0,  bulk excitation (our data); 0, 
Freymuth’s data (using bulk excitation). Note that lip excitation produces a higher growth rate than 
bulk excitation. Spatial theory: --, R = 1 ;  __ -, R -g 1 (Monkewitz & Huerre 1982); ---, 
R = 0.5 (Balsa 1987). 
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growth rates of - a i B / R  = 0.085 and 0.1 at St, = 0.024 and 0.034 (i.e. St8e = 0.012 and 
0.017), respectively (shown by solid circles in figure 8e). These values are close to 
Freymuth’s data and temporal results. This is presumably due to the fact that there 
exit-plane perturbation profiles are different for lip and bulk excitation. Lip excitation 
produces a highly localized perturbation. On the other hand, bulk excitation produces 
non-zero disturbance levels away from the shear layer. 

3.2.2. Subharmonic 
In figure 8(c,  d ) ,  the subharmonic initially grows independently according to the 

linear instability theory; and its growth rate increases with St,  (within our measured 
St,, range) which is consistent with the theoretical predictions (figure 8e) .  However, as 
x, is approached, the growth rate first decreases for a short distance and then 
increases to a higher rate (than in the linear region), indicating resonant interaction. 
This decrease is quite prominent at low StOc (e.g. SrOc rz 0.008-0.012) but gradually 
diminishes with increasing St,. In fact, the modification of the growth rate near x, is 
negligible for St,, = 0.018-0.024. 

Is the observed decrease in u ; , ~  .growth rate an artifact of measurement location 
(along the lip line y = 0), as flow divergence may cause changes in y)? Profiles at 
a few x stations indeed show shifts in the locations of uilz peaks. The streamwise 
evolution of uilZ peaks at a low St,c (= 0.008) is shown in figure 9(a) .  Although the uilZ 
peak distribution does not decay near x,, this does show an almost zero growth rate 
over short distance near x,. This local arrest of the subharmonic growth is explained 
below in terms of vortex induction inferred from flow visualization and hot-wire data. 

For a given St, A R ,  increases with ARi,, producing pairs of rolled-up vortices 
closer to each other. As an example, compare figures 6(a)  and 7 ( a )  (both at 
St,, = 0.012 and q5efl). A high A R ,  (figure 7 a )  causes almost simultaneous rollup of a 
larger leading vortex and a smaller trailing vortex while for a low AR,, the trailing 
vortex rolls up only after the leading vortex rolls up. On the other hand, for a fixed 
ARi,, a change in StOc causes AR,, to change because of the variations in the growth 
rate and saturation amplitude. Thus, by keeping AR,, fixed, one would expect 
differences in the strength, size, and distance between the rolled-up vortices due to 
changes in StOc. Our measurements at fixed AR,, show that AR,,.increases with St,  
(figure 9b) .  The large increase in the A R ,  value for StOc 2 0.017 is due to the larger 
growth rate of the subharmonic than the fundamental. Physically, vortices are 
produced at the subharmonic frequency, and the fundamental appears as the harmonic 
of the subharmonic. In the following, the effect of AR,, on the proximity of vortices 
that eventually pair and the induction of the downstream paired vortices on the 
upstream pairing vortices are discussed. We consider two ranges of SZe, values: (i) 
0.017 < St,  < 0.02, for which uiIz displays very little growth change near x,, and (ii) 
0.008 < StOc < 0.012, for which u ; / ~  shows a significant decrease in the growth rate 
before it increases dramatically near xr. Note that A R ,  is greater in case (i) than in case 
(ii). For these two cases, the configuration of vortices from flow visualization and their 
induced velocities are schematically shown in figure 9(c, d ) .  

For case (i) (shown in figure 9 4 ,  the distance A, between vortex 1 and vortex 2 is less 
than h seen by visualization, the fundamental wavelength, while the distance between 
vortex 2 and the downstream paired vortex 3 is 2h. As a result, the mutual induction 
between 1 and 2 (induced velocities are denoted as uI2 and uzl) is stronger than the 
opposing motion uzs induced by 3. Thus, vortices 1 and 2 start rotating around each 
other, producing an increased subharmonic growth rate until their pairing is complete. 

In case (ii), since AR,, is smaller (figure 9 4 ,  vortices 1 and 2 do not roll up as close 
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FIGURE 9. (a) Streamwise evolution of u; and u;,* peaks at St, = 0.008, showing zero growth rate of 
the subharmonic near x, x 608, for #,,,; 0, u;; 0, u;/*. (b)  Dependence of AR,, = (~,,~/u,),, on St,. 
a; = a;/2 = 0.1 % ; # = q5,,,. (c,  d )  Schematics of vortex configuration and induced motions for: (c> 
high Strouhal number (St,. z 0.017); ( d )  low Strouhal number (St,* z 0.008). 

to each other as in case (i). The distance between vortex 1 and vortex 2 is denoted as 
A,. Since vortex 1 begins to roll up after rollup of vortex 2 is nearly complete, uZ3, 
induced by the paired vortex 3, pushes 2 down toward the lip line and thereby arrests 
the subharmonic growth over a short distance near x,. However, as soon as vortex 1 
rolls up, uZ1 increases and eventually supersedes uZ3; this is because u,, and uI3 (not 
shown) push it down so that vortex 1 gets closer to vortex 2. Thus vortices 1 and 2 begin 
pairing, producing an increased subharmonic growth rate. 

Note that without a subharmonic, the circulation r of a vortex and the wavelength 
h are both inversely proportional to Stet, and hence the motion induced (- T / h )  on a 
vortex by its neighbour is independent of St,,. However, in the presence of a 
subharmonic, visualization shows that decreased St,# (and hence AR,,) increases the 
dimensionless distance between pairing vortices, i.e. h1/2h < A,/2h. As a result, the net 
induction on vortex 2 by the downstream paired vortex 3 increases, so that pairing is 
further delayed with decreasing Stee. 

The parallel, or even slightly non-parallel, approximation does not allow vortex 
pairing through leapfrog motion (see figure 16 of Monkewitz 1988). Such an analysis 
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FIGURE 10. Dependence of the estimated induced velocity (utn/Ut) at the lip on 
St,, caused by a rolled-up vortex, showing maximum v,JUt at Sr, w 0.012. 

cannot predict the subharmonic up to its saturation (i.e. completion of the pairing 
through leapfrogging) or, in turn, the decrease in the observed subharmonic amplitude 
for near x p  

3.2.3. Natural instability frequency and feedback 
Extending our analysis of vortex-induced motion, we now discuss the rollup 

frequency in naturally evolving shear layers. As previously noted, initially laminar 
shear layers were found to roll up at Stee x 0.012 (Zaman & Hussain 1980) while the 
theoretical value of the most unstable Strouhal number is St, x 0.017. This 
experimental observation is believed to be a consequence of the feedback (caused by 
the induced velocity of rolled-up vortices) being strongest at Stee x 0.012 (Hussain 
1986). From our experimental data we now estimate the feedback at various St,. 

If we assume that the boundary-layer vorticity is advected at a velocity Ue/2 and 
rolls up into vortices at a frequencyS, the circulation r per vortex is U32f (= Ueh) .  
The leading-order term of the induced velocity utn at the exit plane due to a rolled-up 
vortex at x6 is 

and 

Induced velocities vtn/Ue (computed from xf data) as a function of Ste, (figure 10) show 
that vi,,/Ue reaches its maximum at Stet x 0.012, thus explaining the experimental 
observation of vortex rollup at Stet x 0.012. 

Note that these are estimates of vtn/Ue, the total induced velocity. What is important 
for instability is the fluctuating part of the induced velocity at the lip from advecting 
vortices. An estimate using a row of advecting point vortices of equal strength and 
spacing shows that the resultant induced velocity fluctuations at the lip are about an 
order of magnitude less than the total induced velocity estimated from a single vortex 
at xf (shown in figure 10). Relative levels shown in figure 10 should remain 
approximately the same if we consider fluctuations only. Thus, for unexcited shear 
layers Ste, x 0.012 will produce the strongest feedback at the lip and will be self- 
sustained; we term this frequency the 'natural instability frequency'. 
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3.3. Further details of the fundamental and subharmonic growth 
and their phase evolution 

In this section, we examine the effects of q5,,, and q5ut on (i) the downstream evolutions 
of u; and uilZ (along the lip line), (ii) the transverse distributions of U(y) ,  u;(y)  and 
U ; / ~ ( - V ) ,  and (iii) the streamwise variations of phase differences and phase velocities. The 
results are compared with the theoretical predictions of critical fundamental amplitude 
and the phase velocities required for resonant interactions. This can form a database for 
modelling nonlinear interactions in a non-parallel shear layer. Here we show results for 
excitation at St, = 0.012 and its subharmonic with a; = a;/z = 0.1 YO. 

3.3.1.  Growth of the fundamental and the subharmonic 
The streamwise evolution of u;(x) (figure l l a )  illustrates that its growth and 

saturation are independent of q5 (i.e. or q5ut) up to x,. The subharmonic grows 
exponentially up to x/0, - 20 irrespective of the growth rate 
of u;/~ is decreased near x, owing to the induced motion of the downstream vortices 
undergoing pairing (explained in $3.2.2). Downstream of x,, uiIZ grows resonantly and 
saturates at x/0, - 125, indicating completion of pairing. 

u;lz decays near x, but grows again farther downstream. 
Monkewitz (1988) predicts a monotonic decay of u ; / ~  with x for this critical value of 
q5 in parallel flows. In reality, ambient disturbances cause pairing to occur randomly in 
space and time (see $3.1.2). This has also been suggested by Monkewitz (1988). 
Intermittent pairings result in a lower, yet growing, r.m.s. subharmonic amplitude 
(about 20 dB at x x 608, and 7 dB at x x 1200,, less than that for 

Traces of u' show a strong subharmonic component for q5en (figure 1 1  b), indicating 
periodic pairing. On the other hand, the tl-traces for (figure 1 1  c )  show that the 
subharmonic appears and disappears intermittently. Sections of the zi-traces containing 
a strong subharmonic component are drawn as thick lines, while the dashed parts 
indicate insignificant subharmonic content. The intermittent appearance o f  the 
subharmonic implies intermittent initiation of pairing. We speculate that feedback 
from an occasional pairing alters qJin and triggers additional pairings. However, this 
phase will change owing to jitter in the pairing location so that required for pairing 
suppression may occasionally be attained (reflected by the disappearance o f f / 2  in the 
zi-trace). 

When excited at 

For excitation at 

3.3.2. Distributions of U(y) ,  u;(y)  and ui IZ(y)  

Modifications of U(y) ,  u x y )  and u;,,(y) profiles due to phase changes (from 

U ( y )  profiles are quite similar up to x, (i.e. x/@, = 60) for both 

to 

and q5ut (figure 
12a, b). Farther downstream, the profiles broaden more when excited at q5e? than at 
The momentum thickness 0 variations with x are shown in figure 12(c). (8 IS computed 
by integrating between the limits 0.05 < U / U ,  4 0.95.) Close to the exit plane, the 
shear layer shows almost no growth up to x/B, x 20. (The absence of growth near the 
exit was also observed by Hussain & Zedan (1978) and Husain & Hussain ( 1  979) in the 
same facility with a smaller diameter nozzle.) Near the rollup location (from x/0, x 40) 
the shear layer starts growing, and 8 is almost independent of or up to this 
location. For excitation at $,,, 0 increases rapidly downstream of x, because of the 
immediate onset of vortex pairing. For 0 increases at a much lower rate (almost 
half) than that for 

and q5ut. Note 

were documented at a few x/@, locations. 

because of delayed, intermittent pairings. 
Profiles of u x y )  (figure 13a-d) up to xf are almost identical for 
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Traces of u-fluctuations at x/Be = 125 for: (b) 
Periodic pairings at the same location (periodic subharmonic in the velocity signal) occur for 
while intermittent pairings (insignificant subharmonic shown by dashed line) occur for 

0,  u ; , ~  for Note the early and delayed growth and saturation locations (b ,  c) 
Sr, = 0.012; (I; = a;,z = 0.1 %. U/U, = 0.9. (c)  

that the transverse location of the uay) peak lies along the lip line up to xf but shifts 
toward the high-speed side farther downstream. Distributions of ui12( y )  in figure 
14(a-d) show that, when excited at $at, the entire profile is suppressed significantly for 
x/O, 2 30 as expected owing to infrequent pairings. From the profiles for the peak 
values of u; and u;,~ as a function of x are plotted in figure 15. The amplitude u;,,(x) 
shows a decrease in its growth rate at x/O, z 35 followed by an increase, at which point 
u;/Ue x 0.03. For Sfo, = 0.017 (not shown), the modified growth of ui12 occurs at 
u;/U, x 0.04. These values of .;/We are higher than the critical fundamental 
amplitude u;/Ue = 0.015 predicted by Monkewitz (1988) for a parallel shear layer. 
This difference appears to be due to the parallel-flow approximation in the theory. 
Contours of vorticity presented by Monkewitz (his figure 16) show that, even for 
slightly non-parallel flow, the two pairing vortices elongate in the streamwise direction 
and fuse together only in the region where they touch each other without rotating 
around each other. During this process, the peak vorticity is reduced to almost half 
that of the initial vortices. This elongated, diffuse vortex pair has less influence on the 
upstream vortices even at #,,, and therefore cannot cause an initial decrease in the 
subharmonic growth rate (before its resonant growth). (Although the vorticity 
distribution does not affect induced motion in the far field, it does in the near field. 
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It appears that, for resonant interaction in a spatially evolving shear layer, the 
fundamental needs to grow to a level higher than the critical amplitude obtained by 
the parallel-flow approximation in order to counteract the influence of downstream 
pairing vortices. Our data also suggest that the critical fundamental amplitude depends 
on Stee, as would be expected owing to the different strength and spacing of vortices 
at different St,. 

3.3.3. Phase velocity 
Phase velocities v, were computed using the relations a, = a$/ax and v, = w / a ,  where 

$(x) is the phase of the wave at x and w is the frequency (for details, see Hussain & 
Zaman 1978). Owing to large phase gradients offandf/2 components across the shear 
layer, the uncertainty in phase velocity measurements can be large unless performed 
judiciously. We found the transverse location y where U/U, = 0.9 to be suitable for 
phase measurements since the phase approaches an asymptotic value. As previously 
stated (in §3.1), phase measurements on the high-speed side provide more accurate 
data than on the low-speed side. 

Streamwise variations of the fundamental and subharmonic phases and the local 
phase difference are shown in figure 16(ac) for both q5,,, and The corresponding 
phase velocities are shown in figure 16(d,e). 

Close to the exit, the local phases q5 off and f/2 (the phases q5 of the fundamental 
and subharmonic waves are measured with respect to their own reference waves at the 
wave generator) show small changes with x (figure 16a, b), indicating large unrealistic 
phase velocities. (In particular, the subharmonic phase velocity up to x/O, x 15 is 
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are the same as in figure 12. There is no significant effect of $tn on uJy) up to x x 600,. 

greater than the free-stream velocity Ue.) This is an artifact of the superposition of 
acoustic and hydrodynamic waves close to the shear layer origin (i.e. the excitation 
slit), where the contribution of acoustic waves presumably has dominant effects. (For 
details, see Rockwell & Schachenmann 1982.) For 20 2 x/O, 2 40 (figure 16a, b), lines 
indicate phase velocities off(u,/U, = 0.63) and f / 2  (u,/Ue = 0.83) predicted by linear 
theory; in this range, theory agrees well with our data. Farther downstream, lines 
through the data show equal phase velocities (u,/U, x 0.53) off andf/2). 

Figure 16(c) shows that, for excitation at $,,, the initial phase difference evolves 
from x 150" at the exit to 180" (equivalent to 0"; see (2.1)) near x/O, = 40, and then 
decreases to 90" near xr. Downstream of x,, this phase difference remains constant (i.e. 
phase locks) as resonant f / 2  growth occurs. For excitation at #at, the initial phase 
difference evolves from 72" to 180" near x,, the critical value that suppresses urlz 
growth. However, as discussed in $3.1, this critical value is difficult to maintain in a 
laboratory flow, and ambient disturbances will initiate occasional pairing. Note that 
H a j  et al.'s (1993) phase measurements along the ui peak line show #z, = 0" for 
maximum subharmonic enhancement, while we find this value to be x / 2  on the high- 
speed side. This difference in the value of &, is presumably an artifact of the transverse 
measurement location. 

For both #,, and the subharmonic phase speed in the initial region is greater 
than that of the fundamental (figure 16d, e), which is consistent with the linear theory 
(Monkewitz & Huerre 1982). Local phase velocities are computed using third-order 
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polynomial fits to five adjacent data points. Note that two conditions need to be 
satisfied for resonance: (i) optimum phase difference between f and f / 2  near xf, and 
(ii) equality of phase speeds. For both (figure 16c), the 
fundamental phase speed uc/Ue reaches a constant value of about 0.53 within a short 

(figure 16b) and 
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distance (x/6, x 30, much before x,) while the subharmonic phase speed rapidly 
decreases and reaches a value lower than that of the fundamental, then increases and 
eventually matches the fundamental phase speed. For not unexpectedly, the phase 
speed off/2 is matched farther downstream than for $en. 

We have thus examined the roles of $tn in the amplitude and phase evolutions off 
and f / 2 .  Furthermore, we have compared our results with theoretical predictions and 
found some agreements and some discrepancies which we have attempted to explain. 
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3.4. EHects of detuning 
Unforced pairings do not occur periodically. In fact, spatial and temporal jitter in 
pairing is common even when rollup is forced periodically (and thus pairing is initiated 
by feedback or ambient disturbances), except for a limited range of St, and a;. This 
jitter is due to the inability of the subharmonic to phase lock; i.e. (due to f forcing 
and f / 2  feedback) does not remain the same from one pairing to the next. When q5tn 
varies, so does the modified subharmonic growth rate and hence the pairing location. 
Aperiodic pairing typically occurs in an unforced flow owing to unlocked f / 2  feedback 
phase (causing continuously changing In order to explore this effect, we consider 
the simple case of linearly time-varying q5i,(t) via controlled detuned excitation. We 
therefore use detuned excitation to study the streamwise development of the sidebands 
as well as the subharmonic and to examine the mechanisms of phase and amplitude 
modulations in terms of vortex interactions. 

To achieve detuned excitation, we employ two frequencies, either f and f / 2 + A f  or 
f and f / 2 - A J  (For the remaining discussion, we will denote such a forcing as f and 
f / 2  f A$) The introduction of f Af to the f / 2  component is equivalent to a varying 
linearly with time, i.e. 

u f I 2 + ~  = Bcos [nff + &(t) ] ,  where q5 i , ( f )  = 2nAft. 

The experiments were performed at StOe = 0.012 and a; = = 0.1 YO for 
various values of Af (Af / f  = 0.5 %, 2.5 %, and 5 %). For convenience, we denote the 
dominant lower and upper sidebands c f / 2  - Af) and c f / 2  + A f )  byfi and f ,  respectively. 

For a detuning of Af/ f  = 2.5Y0, the &signal at x/e, = 120 (figure 17a) shows 
modulations of the subharmonic phase and amplitude. The generation of multiple 
sideband frequencies f / 2  k nAf ( n  = 1 , 3 , 5 ,  . . .) is clear in the u-spectrum (figure 17b). A 
higher spectral resolution (figure 17 c) shows the generation of f / 2  f kAf(k = 0 , 2 , 4 ,  . . .) 
sidebands also. Note that, unlike figure 17(c), figure 17(b) is a log-linear plot. These 
figures show that the amplitudes of f / 2 k k A f  are much smaller than those of the 
neighbouring sidebands f / 2 + n A f  and thus are not clear in figure 17(b). 

An analysis (G. Broze 1995, private communication) using detuned coupled Landau- 
type equations for amplitude and phase shows that the linearly varying phase becomes 
sinusoidally varying when subharmonic resonance becomes important near the 
fundamental saturation, i.e. detuned excitation causes phase modulation when the 
evolution of the excited sideband becomes nonlinear. Furthermore, since phase 
changes affect the subharmonic growth rate and hence its amplitude at a fixed location 
upstream of pairing, detuned excitation also produces amplitude modulation with the 
same modulation frequency as that of the phase modulation (see Kim, Khadra & 
Powers 1980). Thus, we can consider a simple case where the phase and amplitude 
modulations are represented by cosine waves as 

u(t)  = Bo(l +pcos2nfm f)cos(2nfct+/3cos2nfm t) ,  
m 

= BO(1 +pcos2nfmt)  C Jn(/3)cos(2ncf,+nfm)f>, (3.2) 
n--m 

where p is the amplitude modulation index, f, is the carrier frequency (in the present 
case f ,  = f / 2  + Afl,  f ,  is the modulation frequency for both amplitude and phase, /3 is 
the phase modulation index, and J ,  is the Bessel function of the first kind of order n. 
(For more details on amplitude and phase modulations, see Roden 1991, pp. 153-249.) 
Note that, in each consecutive cycle of f / 2 ,  is advanced by 2nAf radians. Therefore, 
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FIGURE 17. (a) &trace and (b, c) power spectrum of u under detuned excitation, showing phase and 
amplitude modulations in the time trace and generation of sidebands in the spectra. St, = 0.012; 
Aflf = 2.5%. a; = a;,,,,,,, = 0.1 %. 

to advance by n radians, the modulation period T, = n/2nAf In other words, the 
modulation frequency is f ,  = l/T, = 2Af The modulated signal in (3.2) contains all 
frequencies of the formfc + nf, for n = 0, f 1, f 2, . . . . Sincef, is the excited sideband 
(for instance 5/2+Af and f ,  = 2Af), such a modulation produces only the odd 
sideband frequencies (e.g. f / 2  + (1 + 2n) Af) and not the even sidebands (e.g. 
f/2 + 2nAf) as observed in the velocity spectrum (figure 17 c). The only way f/2 and its 
even sidebands can appear is through the generation of a modulation frequency Af 
This Afthen interacts with the odd sidebands to produce even sidebands. A spectral 
analysis of the amplitude and phase obtained from complex demodulation of a detuned 
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FIGURE 18. Growth of fundamental. subharmonic and two sidebands under excitation at various 
detuned frequencies. St,  = 0.012 and excitation levels are: a; = = 0.1 % in (a, b,c) ;  
a; = a;,/,+,) = 0.1 YO in ( d e ,  f). Values of Afl f  are: (a) -0 .5%;  (6) - 2 . 5 % ;  (c)  - 5 % ;  ( d )  0 .5%;  
(e )  2 .5%;  (1) 5 % .  0 ,  u;; A, u;/*; 0,  u;,~+,,,; 0, u ; , , - ~  Note that the nonlinearly produced sideband 
grows at a high rate near x, and reaches the level of the excited sideband. 

velocity signal in a jet (G. Broze 1995, private communication) indeed reveals the 
presence of AJ although at a much lower amplitude (about 20 dB below the level of 
2Af ). The mechanism of Afgeneration is not clear, but its presence implies a timescale 
equivalent to two modulation wavepackets. 

In figure 18(a-f), the amplitude evolution of the two dominant sidebandsf, andf, 
and the subharmonic f/2 along the shear layer lip line are shown for various values of 
Af. When excited at f a n d  a sideband, for instancef,, the u; growth is essentially 
independent of Af up to xr. The r.m.s. amplitude of fh (denoted by S,) initially grows 
exponentially (up to x/O, z 20) following linear theory, but near xr it starts growing 
resonantly until its saturation near x,. Simultaneously, the sideband f i  (produced via 
nonlinear interaction between f andf,) starts growing, but at a much lower level. 
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FIGURE 19. Schematics showing the effects of detuning on vortex pairing dynamics. (a) Dependence 
of u ; , ~  growth on q5ifl at a given x-location downstream of x,. (b)  Dependence of the u&) growth 
rate modification on $$". (c) Corresponding vortex pairing configurations for various 

However, near x f ,  its r.m.s. amplitude S, starts growing at a much higher rate than s h  

until its amplitude becomes comparable to S,,. Along with the two sidebands, the 
subharmonic amplitude also grows (but to a much lower level), changes its slope near 
x f ,  and saturates farther downstream (x/19, > 100). Several of our experimental results 
agree qualitatively with the analysis of Monkewitz (1988): (i) a higher growth rate of 
S, then S, near x f  and (ii) the symmetric growth (i.e. the same amplitudes and growth 
rates of S,  and S,) and saturation of both sidebands farther downstream. Similar 
results are obtained for excitation at f and f,. We find that the degree of detuning 
(Af/f< 5 % )  we used has very little effect on the growth patterns of S,, and S,. 

We now examine the effects of detuned excitation in terms of vortex pairing. In the 
region between xr and x,, flow visualization reveals that the pairing location moved 
upstream and downstream nearly periodically because of changing The 
suppression phase occurs at most once in each modulation cycle, and hence 
occasionally one vortex escapes pairing in each cycle. The shift in the pairing location 
due to phase variation at the exit plane caused by detuning is shown schematically in 
figure 19. Figure 19(a) shows qualitatively the dependence of u ; / ~  on (similar to 
figure 3) .  In this figure, five arbitrary phases are chosen: one (3) at the maximum 
attenuation phase, two ( 1  and 5 )  near the maximum enhancement phases, and two (2 
and 4) phases in between. The corresponding delayed, modified growths of the 
subharmonic are shown qualitatively in figure 19(b). Note that as passes through 
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phases 1 to 5 and back to 1, the u;,* growth rate decreases and then increases, and so 
its saturation location moves downstream and upstream. The corresponding vortex 
configurations and the shift in the vortex pairing location are sketched in figure 19 (c ) .  

As previously stated, we expect similar pairing dynamics to occur with single- 
frequency excitation or even without forcing since, in general, the uncontrolled f/2 
perturbation at the receptivity point due to feedback from pairing is naturally detuned. 
Thus phase-locking off/2 may not occur and pairing will not be periodic. In this 
situation, the flow may reveal low-dimensional dynamics. In fact, studies of jets (Broze 
& Hussain 1994) and shear layers (Narayanan & Hussain 1995) using single-frequency 
forcing found self-detuned pairings and double pairings associated with low- 
dimensional chaos. 

We emphasize that the generation of sidebands occurs even for laminar well-defined 
vortices. Spectral broadening around f/2 in a natural shear layer at a location 
downstream of x, does not necessarily imply transition to turbulence, as is often 
inferred (e.g. see Miksad et al. 1982; Thomas 1990). The spectral broadening is due to 
random phase jitter between f andf/2, causing the pairing location to move randomly 
in space and does not necessarily reflect breakdown of large-scale vortices (i.e. mixing 
transition). 

4. Concluding remarks 
While linear theory predicts quite accurately the initial development, a wave 

description for nonlinearities in a diverging flow, including vortex interactions, is a 
challenging task, even under the assumptions of weakly nonlinear and slightly non- 
parallel flows. It seems quite natural to explore the subharmonic resonance 
phenomenon in terms of vortex dynamics as was done here. 

Controlled two-frequency excitation (both tuned and detuned) has allowed us to 
examine systematically the roles of q5zf and A R ,  in altering vortex configurations (e.g. 
strengths and streamwise and transverse displacements) and subsequent vortex 
interactions. Pairing is stabilized over a wide range of q5*,, while attenuation of the 
subharmonic, i.e. non-pairing vortex advection, occurs at a critical value of q5zf. In 
laboratory flows, however, such an unstable configuration of vortices cannot persist 
because disturbances (ambient as well as pairing feedback) initiate vortex pairing 
randomly. We have identified a wide St,? range over which pairing can be controlled 
(enhanced or suppressed) with low-level, two-frequency excitation. 

We differentiate shredding from either non-pairing or complete pairing of vortices. 
Shredding can be considered to be a fractional pairing process (observed ex- 
perimentally) where a strong vortex captures parts of a neighbouring weak vortex. 
From velocity signals, it is difficult to differentiate unambiguously between shredding 
and enhanced pairing. 

By detuning we have studied the evolution of natural (unexcited) and excited (single- 
frequency) shear layers. In the case of single-frequency excitation, subharmonic 
perturbations at the origin appear owing to feedback from vortex pairings. Periodic 
pairing occurs if between subharmonic (from feedback) and the excited 
fundamental falls in the range which initiates pairing (i.e. q5J and remains the same 
in each pairing cycle. This phase locking is found to occur under single-frequency 
excitation at SrOe x 0.012 at low excitation levels. On the other hand, when excited near 
Stop = 0.017 (for similar amplitudes as those required for periodic pairing at 
Stop z 0.012), the appearance of a weak subharmonic (Zaman & Hussain 1981) 
suggests that the feedback is not locked and remains close to $at most of the time, 
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causing suppressed or delayed pairings. In natural jet and shear layers, although 
fundamental excitation can occur owing to some facility-dependent resonance, 
periodic pairings are rare and detuning is common. Because of random jitter in the 
pairing location, the velocity spectrum shows a broad band instead of sharp sideband 
peaks. Such spectral broadening involves sideband instabilities resulting from random 
phase jitter and does not necessarily indicate transition to turbulence. 
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